Техника - молодёжи 1973-02, страница 399 Свет очищает воду Воду обеззараживают множеством способов: пропуская через систему фильтров (подчас необычных), хлорируя, облучая ультрафиолетом, используя банальное кипячение. Ультрафиолет, к примеру, используется очень часто (от систем очистки бассейнов до портативных устройств для туристов), так как известно, что ультрафиолетовые лучи убивают микроорганизмы. Учёные из Национальной лаборатории материаловеде) i ия Шэньяiia (Китай) разработали фотокатализатор, который быстро и эффективно дезинфицирует воду даже под воздействием лучей видимой части спектра (а именно: в диапазоне длин волн 400-550 им). Для начала ученые допирова- ли волокна оксида титана азотом (чтобы они смогли поглощать видимый свет). Получилось соединение TiON, которое само по себе способно убивать бактерии, но не очень эффективно. Далее химики добавили в систему наночастицы оксида палладия (PdO). Оказалось, что подобное дополнение значительно повысило эффективность дезинфекции. Раствор, в котором содержалось большое количество бактерий Е. coli, просто осветили обычной галогенной настольной лампой (варьируя время воздействия). Спустя чае концентрация микроорганизмов снизилась с десяти миллионов клеток на литр до Одной клетки на десять тысяч литров. Затем исследователи проверили, что происходит с раствором в темноте (после выключения освещения). Для этого сосуд с водой сначала освещали в течение 10 ч, после чего свет выключили и проверили, как проходит дальнейшая дезинфекция. Выяснилось, что даже спустя 24 ч фото к а та л и затор п ро до л жа л убивать Е. coli. Оказалось, оксид палладия увеличивает эффективность дезинфекции сразу по двум направлениям. Фотоны, попадая на поверхность TiON, образуют пары электрон-дырка. При этом положительно заряженные дырки реагируют с водой, давая жизнь ги дро кс и л ы i ы м радикалам, а те, в свою очередь, атакуют бактерии. Наночастицы PdO забирают на себя оставшиеся электроны, в результате последние не могут соединиться с дырками и нейтрализовать их. Сами наночастицы переходят в другое химическое состояние, сохраняя иа себе отрицательный заряд. После выключения света электроны постепенно высвобождаются, образуя с водой новые окисляющие агенты. Ток из космоса К 2040 г. Япония планирует создать космическую электростанцию: разместить на орбите генератор, который постоянно будет производить электричество; передаваемое на Землю. Перво очередная задача проекта создание до 2013 г. новой технологии, которая даст возможность без проводов передавать электричество из космоса на планету. Электростанция должна будет обеспечивать мощность 1 ГБт и получать энергию от массива солнечных батарей площадью 4 кв. км. В отличие от наземных солнечных батарей, космические смогут генерировать ток круглосуточно без выходных дней и перерывов. Кроме того, космическим панелям не помешает плохая погода, а попадание прямых солнечных лучей позволит батаре ям генерировать в 3-4 раза больше электричества, чем их наземным аналогам. Арктика лишится летнего льда? Северный Ледовитый океан может лишиться летнего льда в течение ближайших двадцати лет. Об этом заявил полярный исследователь Питер Уэдэмс, профессор Кембр и джс кого у и и в е рс и те-та (Великобритания), Экспедиция во главе с другим известным учёным Пеном Хэдоу прошла прошлой весной 435 км, делая замеры толщины арктического льда. Средний показатель находится на уровне 1,8 м — это толщина типичного «молодого» льда, который сфор мировался зимои, и, скорее всего, растает летом. В тех арктических регионах, где должен лежать многолетний лёд, его средняя толщина составляет 4,8 м. Эти и другие исследования подтверждают новую гипотезу о том, что уже через двадцать лет — в зависимости от сезонных изменений площади и толщины льда, температур, ветров и особенно состава льда — летняя Арктика окажется свободной от ледяного покрова. Причём быстрее всего лёд будет таять в тече ние ближайших десяти лет. Это значит, что Северный Ледовитый океан летом станет открыт для судоходства через Северный полюс. По словам учёных, таяние льдов несёт с собой очевид ные краткосрочные выгоды, в числе которых быстрая доставка товаров по морю и облегчение доступа к запасам нефти и газа. Однако в долгосрочной перспективе потеря постоянной ледниковой шапки планеты приведёт к ускорению глобального потепления, изменению моделей циркуляции в океанах и атмосфере, а также неизвестным последствиям для экосистем из-за подкисле-ния воды. По материолам 3DNews, MIGnews, lenta.ru, arXiv.org, ВВС, MIGnews, PLoS One, PNAS, CyberSecurity и соб. информ. 37 |