Юный техник 2007-05, страница 78

Юный техник 2007-05, страница 78

В свое время подобные выпрямители (их называли купроксными) широко применяли в технике. Но они сильно грелись, имели большое сопротивление в прямом направлении и получались очень громоздкими. Их заменили германиевые и кремниевые диоды, у которых этих недостатков нет.

Известно, что полупроводниковые диоды в прозрачном корпусе способны изменять свое сопротивление под действием света. Это связано с тем, что попадающий на р-n переход свет увеличивает подвижность зарядов.

Это же явление превращает все полупроводниковые диоды, а также транзисторы со вскрытым корпусом в фотоэлементы, способные вырабатывать электрический ток. Вот этой особенностью и воспользовался Нил Штайнер.

Положите на покрытую окислом поверхность меди кусок проволоки, посыпьте ее поваренной солью и нагрейте на газовой горелке. Соль расплавится и застынет в виде твердой прозрачной капли. Если осветить эту каплю ярким лучом света, то между проволокой и пластинкой появится напряжение 20 — 50 мВ. Вот вам и фотоэлемент. (Судя по нашим опытам, фотоэффект наблюдается и тогда, когда на поверхность окисленной меди наносится обычная капля соленой воды, а в нее вводится тонкая медная проволока.)

Мощность фотоэлемента невелика, и для питания двигателей, например, он непригоден. Но, как оказалось, такие фотоэлементы прекрасно реагируют на быстрое изменение амплитуды светового луча, и их можно использовать в светотелефонах.

Штайнер присоединил через конденсатор емкостью 1мФ к выходу усилителя низкой частоты (УНЧ) лазерный диод от указки и на вход этого УНЧ подал сигнал от плеера.

Свой самодельный фотоэлемент Штайнер подключил ко входу другого УНЧ, нагруженного на громкоговоритель.

Направив луч лазера на фотоэлемент, Штайнер получил высококачественную передачу музыки на расстояние более 20 м. Неплохо для фотоэлемента, сделанного своими руками почти из ничего!

А. ВАРГИН