Техника - молодёжи 1983-11, страница 18

Техника - молодёжи 1983-11, страница 18

чего. Можно даже предположить, что оторвавшийся кусок уходил в гиперпространство. Отрыв куска пространства — это и есть образование четырехмерной «кротовой норы» в пространстве-времени.

Таким образом, решение проблемы сверхбыстрых космических полетов сводится к нахождению ответов на следующие два вопроса. Можно ли оторвать кусок пространства? Если можно, то как его потом «прилепить» к нужному месту так, чтобы по часам Земли прошло как можно меньше времени по мере перелета корабля по образовавшейся «кротовой норе»?

На рисунке 7 показано, каким образом находится ответ на второй вопрос. Читатель, знакомый с дифференциальной топологией, отчетливо может себе представить, какой ворох головоломок скрывается за этим рисунком. На рисунке 8 изображен полет в собственное прошлое. Но здесь следует сразу оговориться, что, если пространство-время априори имеет «кротовую нору», ведущую в прошлое, то такой процесс действительно может реализоваться, хотя вряд ли он отвечает нашему представлению о таком заманчивом путешествии. Создать же искусственно такие «норы», по-видимому, в принципе нельзя, и это каким-то образом должно входить в число запретов, действующих в природе.

Постараемся теперь ответить на основной, первый вопрос:

КАК РАЗОРВАТЬ ПРОСТРАНСТВО?

Попытаемся показать, как решается поставленная перед нами задача, на примере разрыва двухмерной сферы.

Для этого мы должны напомнить о понятии кривизны поверхности. Любая поверхность имеет ту или иную кривизну, для определения которой применяются сравнительно простые математические построения, дающие ее количественное выражение, так называемое абсолютное значение гауссовой кривизны поверхности в данной точке. Кривизна положительна, если в малой окрестности точки поверхность выглядит как кусочек сферы, и отрицательна, если поверхность подобна седлу. Плоскость имеет нулевую кривизну.

В топологии интегральная кривизна замкнутой поверхности, подобной сфере, тору и т. д., определяется теоремой Гаусса — Боне, выводящей ее зависимость от характеристики Эйлера — Пуанкаре. Например, для сферы она равна 2, для тора — нулю, для многогранника — сумме вершин и граней за вычетом числа ребер. Если сфе

ра распадается на две сферы, то характеристика Эйлера — Пуанкаре за счет изменения кривизны сферы увеличивается в два раза. При обрыве от сферы небольшого кусочка кривизна изменяется только в районе области разрыва. В этом случае условие разрыва можно записать в виде неравенства: изменение средней кривизны, умноженное на площадь оторванной области, больше или равно 4л. Естественно, что для реального пространства условие разрыва выводится более сложно (см. статью автора в «Известиях вузов СССР. Физика», № 5 за 1982 год).

Пространство, являющееся трехмерной поверхностью в пространстве-времени, так же характеризуется кривизной. Даже двумя. Одна из них — внутренняя, или скалярная кривизна, определяется без «взгляда со стороны» четвертого измерения. Другая — внешняя кривизна, искривленность пространства в четырехмерном пространстве-времени.

Отрыв шара от пространства происходит за счет резкого изменения средней внутренней кривизны в области шара. Условие разрыва получается следующим: изменение средней внутренней кривизны, умноженное на характерную площадь двухмерного сечения шара, больше или равно 2л. Внешняя кривизна при этом не меняется.

Пространство с течением времени может менять свою геометрию, например расширяться, и, следовательно, изменять свою кривизну. С точки зрения ОТО геометрия пространства определяется распределением материи. Связь между кривизной пространства и распределением материи описывается уравнениями Эйнштейна. Из них, в частности, следует, что для отрыва шара конечного размера от пространства нужно добиться резкого возрастания среднего значения плотности энергии в этом шаре. Полученные автором условия разрыва пространства позволяют рассчитать энергетические параметры, которыми должна обладать двигательная установка звездолета, перемещающегося в пространстве за счет изменения его структуры.

Если отрывается шар, имеющий объем 1 км3, то силовая установка должна создать плотность энергии 1037 эрг/см3. Это очень и очень много! Например, термоядерная бомба характеризуется гораздо меньшей плотностью энергии — 1022 эрг/см3.

Не означает ли это крах идеи лететь к звездам, создавая «кротовые норы» в пространстве-времени.

Утвердительный ответ был бы слишком поспешным. Ведь уже расчеты, связанные с проектом фотон

ного звездолета, приводят к неутешительным цифрам. А с фотонным звездолетом мы продолжаем, за неимением других мыслимых на сегодня средств, связывать будущее космонавтики. Тем более было бы крайне наивно ожидать, что перемещение в пространстве посредством крушения структуры пространства-времени можно осуществить, обладая тем уровнем техники, которым человечество владеет в настоящее время или будет владеть в недалеком будущем.

Наше исследование показывает, сколь большое значение имеет для характеризации уровня развития космической цивилизации такой численный показатель, как производимая плотность энергии.

Цивилизация, осваивающая межпланетные перелеты, использует для этого главным образом законы нерелятивистской теории тяготения Ньютона. Околосветовые, релятивистские скорости для решения задач освоения околозвездного пространства вряд ли нужны. В то же время цивилизация, ставшая на путь межзвездной экспансии, как было показано выше, не сможет удовлетвориться только околосветовыми полетами. У нее возникает необходимость в практическом использовании релятивистской теории про-странства-времени, то есть общей теории относительности, называемой также релятивистской теорией тяготения Эйнштейна. Именно она определяет высокие плотности энергии, возникшие в наших расчетах. Поэтому цивилизация, способная совершать сверхбыстрые межзвездные перелеты, должна освоить уровень производства плотности энергии, сравнимой хотя бы с 1034 эрг/см3 — плотность энергии ядерной материи и нейтронных звезд. Такая цифра берется на основании того, что нейтронная звезда близка по своим параметрам к тому, чтобы оторваться от пространства.

По-видимому, в дальнейшем цивилизация достигнет еще более высокого уровня развития. Она начнет вести космологическую экспансию во -«внутрь» элементарных частиц и будет нуждаться в квантовой релятивистской теории тяготения. Но наша земная цивилизация пока еще далека и от уровня производства плотностей энергии, позволяющих разрывать пространство, «прогрызая кротовые норы» в пространстве-времени. Поэтому ' идея сверхбыстрых полетов за счет изменения структуры мира кажется нам фантастической и недоступной, хотя теоретически она представляется обоснованной уже настолько же, насколько была обоснована возможность космический полетов в начале века.

16