Юный техник 2003-02, страница 16

Юный техник 2003-02, страница 16

Схожие проблемы подстерегают и тех, кто рассчитывает построить терагерцовый лазер. В лазерах, напомним, используют свойства материалов генерировать излучение определенной длины волны. Если, скажем, возбудить газ, воздействуя на него световым лучом или электрическим разрядом, его электроны начнут поглощать энергию, перескакивая с одного энергетического уровня на другой, более высокий. Затем они возвращают избыток энергии, испуская фотоны. Однако, чтобы изготовить терагерцовый лазер, необходим материал, энергетические уровни атомов которого расположены очень близко друг к другу — примерно в 100 раз ближе, чем в тех, что используются, квантовых генераторах. Найти его не так-то просто.

В общем, не случайно специалисты называют эту малоизученную область спектра тера1ерцовой «дырой».

( J< 4t((H Ч.И Wt jHfflth у t П(

Один из возможных подходов в освоении гера1ерцового диапазона — создать необходимый материал, а не искать его в природе.

Некоторое время назад ученые выяснили, что «длину» энергетического перехода электрона можно менять, если задержать его в тонком слое полупроводникового материала, например, в арсениде галлия. Параметры перехода зависят от толщины слоя.

Теоретически можно создавать «нереальные» энергетические уровни. Надстроенные друг над другом, они образуют «суперрешетку», или синтетический кристалл, который действует как материал с искусственными энергетическими переходами. Его-то и можно использовать в качестве рабочего тела лазера.

В 1994 году Федерико Капассо из компании Bell Labs, что в Мюррей-Хил, штат Нью-Джерси, и Джером Фэйст, работающий в швейцарском Университете кантона Невшатель, построили лазер, основанный на суперрешетках. Он способен генерировать колебания в ранее недоступном центральном участке инфракрасного диапазона. Однако настоящий терагерцовый лазер оставался для ученых мечтой вплоть до самого недавнего времени.