Юный техник 2004-07, страница 22

Юный техник 2004-07, страница 22

движении или диффузии заряженных ионов. Причем даже небольшое напряжение приводит к значительной деформации. К сожалению, такие материалы должны быть постоянно влажными, их приходится заключать в гибкую герметичную оболочку. Есть и другой недостаток: если напряжение превышает определенный уровень, начинается электролиз, необратимо повреждающий материал. Электронные «мускулы» — такие, как ферроэлектрические полимеры и электрострикциснные эластомеры — приводятся в действие электрическим полем высокого напряжения. Поэтому здесь требуются особые источники питания и эффективная защита от случайного удара током. Тем не менее, именно материалы этой группы огличаются высоким быстродействием и значительными механическими усилиями.

Схема их действия довольно проста. Представьте себе конденсатор — две параллельные проводящие пластины, между которыми проложен изолятор. При подаче напряжения пластины притягиваются друг к другу и сжимают полимерный изолятор, который при этом расширяется.

Тонкая пленка диэлектрического эластомера (обычно толщиной 30 — 60 мкм) покрывается с двух сторон мягким полимером с внедренными в него проводящими углеродными частицами. Углеродный слой, соединенный проводниками с источником питания, представляет собой эластичным электрод, который может расширяться вместе с пластиком. Из таких слоистых пластиковых пленок и изготавливают приводы нового поколения, размер которых может увеличиваться почти на 400 процентов.

Впрочем, некоторые исследователи остановили свой взгляд на электрострикционных полимерах, таких, как полиуретан или силикон. Углеводородные молекулы образуют в них полукристаллические структуры, опять-таки обладающие

1 0