Юный техник 2005-05, страница 37

Юный техник 2005-05, страница 37

ВЕСТИ ИЗ ЛАБОРАТОРИИ

Это связано с тем, что техническим прогресс в производстве машин первым делом отражается на их деталях. Появляются более прочные материалы, стойкие к износу, высоким температурам. К тому же делать их нужно все точней и точней, да и побыст- —X Рис> х

реи. И как только клубок новых требований обрушивается на головы технологов, им приходится решать множество противоречивых задач.

Основная их масса сосредоточена на кончике резца. Вот что происходит, когда резец, вгрызаясь в деталь, начинает снимать с нее стружку.

Прежде всего, он непрерывно раскалывает перед собой металл, создавая множество параллельных трещин, из которых затем формируется стружка. Заметить это во время работы станка можно лишь при помощи специального прибора. Однако, посмотрев на стружку под лупой, вы убедитесь, что это именно так: на ней множество крохотных трещин (рис. 1).

Сойдя с режущей кромки, стружка изгибается и ударяет в «тело» резца. В этом месте выделяется тепло. Оно составляет 80% от мощности на валу сганка. Не удивительно, что резец порою раскаляется докрасна и теряет прочность. Кроме того, мельчайшие, как порошок, раскаленные осколки стружки создают на резце наплыв, изменяя его форму и делая непригодным к работе.

Со всеми этими неприятностями борются много лет. В XIX веке резиь делали из твердого, как стекло, отбеленного чугуна. В XX веке, когда появились прочные стали, легированные никелем, хромом и марганцем, специально для их обработки создали сверхпрочные стали — с дооав-лением вольфрама и ванадия. Со временем процент железа в ней уменьшали, от чего она становилась все тверже, и, наконец, ее стали называть уже не сталью, а твердыми сплавами. Оии крайне дороги. Поэтому на стальной резец припаивают лишь крохотную пластинку такого сплава.

Сверхтвердые сплавы могут работать, не тупясь, при температуре до тысячи градусов. Но при таком режиме

5 <>