Техника - молодёжи 1981-01, страница 37

Техника - молодёжи 1981-01, страница 37

ТРИБУНА СМЕЛЫХ ГИПОТЕЗ

ЧИСЛА, КОТОРЫЕ ПРЕОБРАЗИЛИ МИР

ГЕРМАН СМИРНОВ

Если сравнить, что ученые разных веков говорили о связи между математикой и физикой, нетрудно обнаружить некую парадоксальную «обратную пропорциональность»: чем больше успехов в познании природы достигали исследователи с помощью математических методов, тем большее недоумение у них самих вызывали эти успехи.

В то время как Кеплер и Декарт, по сути дела, отождествляли природу с математикой, современные ученые ясно осознали, что связь между объективно существующим физическим процессом и абстрактной, «выдуманной людьми» математической закономерностью есть не более чем интуитивное, ничем не обоснованное предположение, которое почему-то дает достоверные предсказания. Известный американский физик, нобелевский лауреат Е. Вигнер прямо называет эффективность математики в естественных науках «непостижимой»...

Какой разительный контраст между непоколебимой уверенностью XVII века и почтительным сомнением XXI Какое множество драматических событий должно было произойти прежде, чем стал возможен этот переход от уверенности к сомнению!

НЕОБХОДИМОЕ

ИСТОРИЧЕСКОЕ ОТСТУПЛЕНИЕ

Если внимательно рассмотреть труды великих естествоиспытателей XVII века — Галилея, Гюйгенса, Паскаля, Ньютона, Якоба и Иоганна Бернулли и др., — нетрудно убедиться, что это не последовательное, систематическое развертывание

следствий и выводов, с математической строгостью вытекающих из исходных аксиом и постулатов, а набор более или менее остроумно поставленных и изящно решенных

механических задач. Причем авторы этих решений никогда не упускали из виду, что объект их исследований состоит из мельчайших материальных частиц — корпускул, молекул.

Представление о реальном теле как о конгломерате материальных частиц избавляло великих геометров XVII века от опасности впасть в односторонность. Они всегда помнили, что физику нельзя свести к геометрии, что физическая задача должна решап-гя4, синтетически — набором разнородных средств. Тут может быть и г е наблюдение, и логическое рассуждение, и математический анализ, и применение какого-нибудь не очень строгого, но плодотворного и дающего хорошее объ-

—— к -— ^ о

Созерцая окружающее, мы и не предполагаем, что картину, открывающуюся нашему взору, можно представить как-либо иначе. Однако ученые, исходя из умозрительных выводов, полностью рассеяли это заблуждение.

яснение принципа, и остроумный эксперимент. Благодаря такому уважению к реальности исследователи тех времен редко отходили далеко от действительности, и сочинения большинства из них сохранили достоверность и ценность вплоть до наших дней.

Если мы возьмем труды Ньютона, то не обнаружим в них той теоретической механики, которую мы все привыкли именовать ньютоновой. В своих великих «Математических началах натуральной философии» он пользовался синтетическо-геометри-ческим методом, и мы напрасно стали бы искать в этом трактате привычные нам с институтской скамьи «ньютоновы дифференциальные

уравнения движения». Создав основы механики и методов математического анализа, великий геометр

XVII века не слил их воедино: эта миссия выпала на долю Эйлера.

Эту линию развития довелось завершить П. Лапласу и Ж. Лагранжу. Первый из них считал, что реальный мир может быть сведен хотя и к чрезвычайно сложному, но одному уравнению, которое охватит движение и самых больших тел, и мельчайших атомов. Существо, наделенное достаточно большой памятью, анализируя это уравнение, могло бы, по мнению Лапласа, «обозреть одним взглядом как будущее, так и прошлое». Что же касается Лагран-жа, то в предисловии к своей знаменитой «Аналитической механике» он в 1788 году писал, что геометрия полностью изгнана со страниц его труда и что в нем нет ни одного чертежа, ни одного механического рассуждения. Единственное, чего требовал его метод, — это алгебраические операции, подчиненные планомерному и однообразному ходу.

Казалось бы, идея тождественности механики и математики торжествовала, но некоторые современники Эйлера и Лагранжа проницательно указывали на тайные дефекты в фундаменте их стройных теорий. Так, петербургский академик Даниил Бернулли ясно понимал, что для составления уравнений движения потребовалось «обезличить» материю и превратить ее мельчайшую частицу — корпускулу — в математическую точку — носительницу трех координат, лишив ее .всех физических свойств. Доказывая, что такая операция некорректна, что законы движения нельзя свести к законам чистой геометрии без какой-либо физической гипотезы, Бернулли скорбел по поводу тех ученых, которые предпочитают жонглировать математическими формулами и символами, не задумываясь о тех допущениях и принципах, с помощью которых математика привязывается, пристыковывается к физическим процессам.

История показала, что Бернулли был прав. «Обезличение» материи не прошло даром: к началу XIX века даже в пределах механики математически полученные результаты порой так сильно расходились с действительностью, что физики и инженеры стали равнодушно и даже враждебно относиться к математическим исследованиям. Положение усугублялось тем, что великие геометры XVII—XVIII веков, ставившие в центр своих исследований механические задачи и рассматривавшие математические методы как средство, а не как цель, не уделяли достаточного внимания строгому обоснованию начал самой математики, поэтому в начале XIX века часть сил была отвлечена «а внутренние нужды самой математической науки. Наконец в первой половине XIX века

3*

35