Техника - молодёжи 1987-02, страница 55

Техника - молодёжи 1987-02, страница 55

чальных полезной нагрузки и дальности полета. Сокращение длительности активного участка создаст дополнительные трудности для подсистемы обнаружения, слежения и наведения, что, в свою очередь, снизит эффективность противоракетных средств.

Все другие меры противодействия системе ПРО на активном участке траектории можно подразделить на две основные группы: меры, затрудняющие нацеливание противоракетных средств, и меры усиления защиты корпуса ракеты. К первой группе относится изменение яркости излучения и конфигурации факела двигателя ракеты. Объектом поражения, естественно, является не сам факел, а ракета, находящаяся от него на некотором расстоянии, и любая система наведения по инфракрасному излучению должна использовать алгоритм исчисления местоположения самой ракеты относительно факела. Кроме того, лазерный луч необходимо на несколько секунд зафиксировать на определенном участке корпуса ракеты. Эти обстоятельства позволяют, изменяя яркость факела или его конфигурацию, затруднить проблему наведения и удержания луча, поскольку фиксируемые инфракрасными датчиками изменения факела будут вызывать в соответствии с используемым стандартным алгоритмом смещения самого лазерного луча. Такая нестабильность факела может быть достигнута добавкой различных присадок в ракетное топливо.

К этой же группе мер противодействия может быть отнесена маскировка ракетных пусков. Она может осуществляться путем создания дымовых завес над районами пуска или применением различных средств, маскирующих ракету во время полета, например, оснащением ракет маскировочными экранами.

Многообразны и способы защиты ракет от воздействия лазерного облучения. Они могут включать защиту корпуса ракеты отражающими или поглощающими покрытиями либо приданием ей вращательного движения вокруг собственной продольной оси, что не позволит зафиксировать лазерный луч на определенном участке корпуса. Эффективной мерой может оказаться оснащение корпуса ракеты дополнительной системой охлаждения или установка в нем подвижного поглощающего экрана, перемещаемого в зону нагрева. Например, экран такого рода с графитовым покрытием толщиной 1 см достаточен для поглощения тепловой энергии 200 МДж/м2. Перспективной контрмерой может быть распыление в атмосфере различных веществ с целью создания дымов или аэрозолей, то есть завес, поглощающих лазерное излучение. Не исключено, что окажется целесообразным использовать конструктивные схемы первых ракет. Скажем, на немецкой баллистической ракете Фау-2 баки с горючим и окислителем находились внутри силовой оболочки

корпуса. Отказ от несущих конструкций баков и возврат к двухконтурной конструкции с установкой дополнительных легких теплоизолирующих прослоек между баком и обшивкой ракеты могут существенно повысить стойкость МБР в отношении лазерного облучения.

Баллистический участок траектории, то есть полет по баллистической кривой от момента отсечки двигателя последней ступени ракеты и отделения головной части до входа боеголовок в атмосферу, обычно разделяется на две фазы. Первая — это полет головной части в целом до разделения боеголовок и выброса ложных целей. Вторая — самостоятельный полет боеголовок и ложных целей до входа в атмосферу.

Естественно, первая фаза этого участка вследствие меньшего числа объектов и отсутствия ложных целей, затрудняющих индентификацию боеголовок, представляется более удобной для перехвата. Но ракеты могут завершать активный участок в пределах атмосферы при более раннем отделении головных частей и разделении последних на боеголовки. Поэтому большинство исследователей считает, что баллистический участок следует рассматривать в основном как фазу полета разделившихся боеголовок.

Большая длительность этой фазы (20 мин и более для МБР и около 10 мин для БРПЛ) расширяет возможности перехвата.

С другой стороны, на этой фазе траектории противоракетным средствам приходится иметь дело со значительно большим количеством объектов, подлежащих идентификации и перехвату, число которых при массированном ударе может достигать нескольких десятков тысяч. Все эти объекты, как боеголовки, так и ложные цели, движутся практически с одинаковой скоростью по аналогичным баллистическим траекториям. Таким образом, главная трудность перехвата на этой фазе заключается в жестких условиях, налагаемых на подсистемы обнаружения, опознавания, слежения и боевого управления, которые еще более ужесточаются, если массированный удар не был достаточно ослаблен на предыдущих участках полета ракет.

Указанные два принципиальных обстоятельства позволяют прийти к заключению, что с точки зрения прорыва через ПРО на этой фазе следует использовать в основном пассивные контрмеры, противодействующие средствам слежения и наведения противоракетной системы. Обнаружение и отслеживание целей, то есть боеголовок, на рассматриваемой фазе чрезвычайно усложнено тем, что наряду с большим количеством движущихся объектов они сравнительно невелики по размерам и лишены ракетных факелов. В обсуждаемых в настоящее время в США схемах ПРО с элементами космического базирования функции

обнаружения, идентификации и наведения должны осуществляться с помощью обширного набора активных и пассивных средств (включающих оптические, инфракрасные, радиолокационные и др.), базирующихся на Земле, в воздухе и космосе. Помимо того, что все эти средства будут уязвимы по отношению к мерам противодействия, упоминавшимся выше, против них может быть разработан свой арсенал контрмер.

Как уже неоднократно указывалось, одной из наиболее эффективных мер противодействия являются различного рода ложные цели. К примеру, одновременно с разделением боеголовок вокруг них может быть рассеяно облако металлических фрагментов, которые будут не только поглощать и отражать радиоволны, но и рассеивать отраженное от боеголовок радиолокационное излучение. Эффективным средством противодействия инфракрасным средствам обнаружения и наведения является распыление вокруг боеголовки облака аэрозоля, являющегося источником инфракрасного излучения. На его фоне можно обеспечить маскировку собственного инфракрасного излучения боеголовки.

Работоспособность датчиков космической ПРО может быть значительно снижена использованием другой стороной различного рода средств постановки электронных помех, подавления или искажения сигналов, а также оснащением ложных целей средствами, имитирующими отражение от боеголовок лазерных, радарных или оптических сигналов.

На конечном участке траектории (при входе в атмосферу) ложные цели отстанут от боеголовок вследствие отличий по массе и аэродинамике, что облегчает их селекцию датчиками обнаружения противоракетной системы. Однако длительность этого участка траектории не превышает 60 с, что требует применения средств перехвата с большим быстродействием. В противовес таким средствам можно применить маневрирование высокоскоростных боеголовок. Может быть использован и такой путь, как повышение мощности боеголовок и применение на них взрывателей, упреждающих уничтожение боеголовки перехватчиком. Расчеты показывают, что в этом случае при подрыве боеголовки с ядерным зарядом даже на высоте более 10 км от поверхности Земли поражающий эффект будет значителен.

Завершая рассмотрение возможных мер противодействия, доступных другой стороне в случае развертывания Соединенными Штатами создаваемого по программе СОИ ударного космического оружия, следует отметить, что некоторыми сторонниками СОИ эшелонированная структура противоракетной системы в космосе представляется достаточно нечувствительной к снижению эффективности отдельных ее эшелонов. Для «доказательства»

53

Предыдущая страница
Следующая страница
Информация, связанная с этой страницей:
  1. Олимпийский факел
  2. Пиросистемы

Близкие к этой страницы