Юный техник 1969-02, страница 56Малое приборостроение В школьном факультативном курсе по математике дам предстоит знакомство с теорией вероятностей. Чтобы легче было понять отдельные закономерности этого закона, предлагаем вам построить небольшой прибор Такой прибор был создан в к рут но радиоэлектроники республиканской СЮТ Марийской АССР Борисом ГРЕБНЕВЫМ и Михаилом СОЛОХИНЫМ под руководством А. М. НУРЫЛЕВА. Явления и события, происходящие в природе, можно разделить на три группы. Первая группа — достоверные события. Достоверное событие обязательно произойдет, если будут выполнены вполне определенные условия. Например, если камешек поднять и отпустить, то он упадет на землю. Вторая группа — невозможные события, то есть такие, которые при определенных и известных условиях произойти не могут, так как отсутствуют причины Для их возникновения. Например, камень, лежащий на земле, не может подниматься вверх сам. Третья группа — случайные события Случайное событие может произойти, а может и не произойти Например, при стрельбе в цель, при измерениях физических величин, в движении молекул и т. п. в той или иной степени наблюдаются элементы случайности. Все случайные события не являются беспричинными. Они имеют множество причин, но нельзя предсказать, возникнет ли такая их совокупность, которая приведет к данному явлению. Изучая причины случайных явлений и их очень сложную взаимную связь, предсказывают наводнения, погоду, условия распространения радиоволн и т. д. И чем глубже постигаются эти причины, тем меньше будет ошибок в предсказаниях. Причины, приводящие к тем или иным явлениям, изучаются физикой, химией, метеорологией и другими естественными науками. Было установлено, что массовые случайные события, то есть такие, которые повторяются при многократных испытаниях, подчиняются определенным закономерностям. И теория вероятностей, являясь разделом математики, устанавливает эти закономерности. Наиболее распространенным в природе законом распределения случайных величин является так называемый закон нормального распределения (закон Гаусса). Распределение Гаусса имеет место в том случае, если случайная величина зависит от большого числа факторов, могущих вносить с равной вероятностью положительные и отрицательные отклонения. Примером такого распределения может служить рассеяние зерна в приборе, получившем название доски Гальтона. Доска Галь-тона воспроизводит картину случайных отклонений от среднего положения частиц в результате суммирования большого числа равновероятных элементарных ошибок (см. рис.). Сыпучий материал (например, пшено, горох) из воронки I просыпается через ряд стержней из медной проволоки 2, отклоняющих частицы от вертикального направления. При соударении частиц со стержнями происходят элементарные отклонения с равной вероятностью вправо и влево. Рассеянное зерно, собираясь между перегородками 3, дает представление о характере распределения случайных отклонений от вертикали Нормальное распределение зерен измеряется по уровням зерна между перегородками и наносится на график. 54
|