Техника - молодёжи 1976-04, страница 47

Техника - молодёжи 1976-04, страница 47

Во вселенной мы наблюдаем миллиарды звезд как с массой в десятки раз меньше солнечной, так и в десятки раз больше. Звезды теряют свою тепловую энергию в виде электромагнитного излучения с поверхности. Чем больше масса звезды, тем большую светимость она имеет. Так, звезда с массой в десять раз больше массы Солнца имеет в десять тысяч раз большую светимость.

Длительное время потери энергии компенсируются реакциями термоядерного синтеза, протекающими в глубоких недрах звезд. Но после исчерпания ядерных ресурсов звезда начинает остывать. Расчет показывает, что звезды типа нашего Солнца сжигают свои запасы примерно через 10 млрд лет а с массой в десять раз большей — уже через 10 млн. лет. Ведь их светимость в 10 000 раз больше. С началом остывания звезда под действием гравитационных сил начинает сжиматься. В зависимости от массы сжатие приводит к трем различным типам объектов (см. рис. 1). Звезды с массой порядка солнечной превращаются в белые карлики — довольно плотные тела (плотность 105 — 109 г/см3), имеющие размеры, сравнимые с радиусом Земли. Сила тяжести в белых карликах уравновешена давлением вырожденных электронов, которое обусловлено квантовыми свойствами плотного электронного газа Для звезд с массой больше чем 1,2 АЛс давление вырожденных электронов уже не в состоянии противодействовать возрастающей силе гравитации, и такие звезды продолжают сжиматься дальше. Если значение массы не превышает 2—3 Мс, то ее сжатие останавливается при плотности атомного ядра 1014—1015 г/см3. При такой плотности вещество практически полностью превращается в нейтроны, и сила тяжести уравновешена давлением вырожденного нейтронного газа. Естественно, что такие

1 Возраст Солнца на сегодняшний день 5 млрд. лет.

объекты были названы нейтронными звездами. Радиус нейтронной звезды составляет всего несколько километров. Сжатие исходной звезды, имеющей радиус в миллионы километров, до размеров в десять километров происходит мгновенно (в рамках понятий астрофизики, т. е. со скоростью свободного падения — около часа), и за короткое время выделяется гигантское количество энергии. Внешние части звезды буквально взрываются и разлетаются со скоростью в десятки тысяч километров в секунду. Большая часть энергии при этом излучается в виде электромагнитных волн, так что светимость звезды в течение нескольких дней становится сравнимой с общей светимостью всех звезд в Галактике. Такой взрыв получил название вспышки сверхновой.

Наконец, если масса звезды превышает тройную массу Солнца, то уже никакие силы отталкивания не могут остановить процесс сжатия, и он заканчивается релятивистским коллапсом с образованием «черной дыры».

Но это не значит, что возникшие космические объекты будут иметь пропорциональные массы. На причинах этих несоответствий подробно остановился в своем докладе академик Я Зельдович. Для сил тяготения характерен дефект массы. Могут возникнуть состояния, когда гравитационный дефект массы достигнет 30, 50 и даже 99%.

Теоретические расчеты дают несколько способов рождений «черной дыры» (рис. 2). Во-первых, возможен прямой коллапс массивной звезды, при котором яркость исходной звезды, воспринимаемая далеким наблюдателем, будет быстро падать. Из фиолетовой звезда быстро становится красной, затем инфракрасной, а потом и вовсе погаснет. Хотя она будет по-прежнему излучать энергию, поле тяготения становится столь сильным, что траектории фотонов будут заворачиваться обратно к коллалсирующей звезде. Возможен также следующий

И. Новиков: «Черные дыры» нестабильны — испаряясь, они излучают фотоны и другие элементарные частицы».

Я. Зельдович: «Гравитационные силы способны любое, даже очень малое количество вещества перевести в коллапсирующее состояние с большим дефектом масс».

Р. С ю н я е в: «Квазары не «черные дыры», но их структура, вероятно, включает в себя «черные дыры».

Н. Ш а к у р а: «Существование «черных дыр» не гипотеза, оно доказано теоретической физикой и проверено экспериментально».

путь: центральные части звезды сжимаются в плотное горячее нейтронное ядро с массой больше критической, а затем после быстрого остывания (за время порядка десятков секунд) массивная нейтронная звезда коллапсирует дальше в «чёрную дыру». Такой двухступенчатый процесс приводит к взрыву наружных частей звезды, аналогичному взрыву сверхновой, с образованием нормальной нейтронной звезды Наконец, «черная дыра» может образоваться из нейтронной звезды спустя десятки миллионов лет после взрыва сверхновой, когда масса нейтронной звезды в результате выпадания на ее поверхность окружающего межзвездного вещества превысит критическое значение.

Можно ли наблюдать эти три типа конечных объектов звездной эволюции: белые карлики, нейтронные звезды и «черные дыры»?

Исторически оказалось, что белые карлики были обнаружены задолго до того, как разобрались в теории звездной эволюции. Они наблюдались как компактные белые звезды с большой температурой поверхности. Но откуда они черпают свою энергию, ведь, по теории, источники ядерной энергии в них отсутствуют? Оказывается, они светят за счет запасов тепловой энергии, которая осталась у них от предыдущих, горячих этапов эволюции Имея малую

45