Техника - молодёжи 1976-04, страница 49

Техника - молодёжи 1976-04, страница 49

площадь поверхности, эти звезды теряют свою энергию весьмб экономно. Они медленно остывают и за время порядка сотен миллионов лет превращаются в черные карлики, то есть становятся холодными и невидимыми.

Нейтронным звездам повезло больше. Они сначала были открыты теоретиками «на кончике пера», а спустя почти 30 лет после предсказания были обнаружены как источники космического строго периодического излучения — пульсары. (За это открытие А. Хьюишу, руководителю группы английских астрономов, обнаруживших первый пульсар, била присуждена Нобелевская премия.) Наблюдаются пульсары с периодами следования импульсов от сотых долей секунды у самых молодых пульсаров до нескольких секунд у пульсаров, возраст которых составляет десятки миллионов лет. Периодичность пульсаров связана с их быстрым вращением вокруг собственной оси.

Представьте себе прожектор, находящийся на поверхности некоторого вращающегося объекта. Если вы находитесь на пути луча света от такого объекта, то увидите, что излучение от него будет приходить в виде отдельных импульсов с периодом, равным периоду вращения объекта, — это и будет грубая, приближенная, но верная в своей основе модель пульсара. Почему же излучение с поверхности нейтронной звезды уходит в узком конусе углов, как луч света от прожектора? Оказывается, благодаря мощному магнитному полю 10"—1012 гс нейтронная звезда излучает энергию лишь вдоль силовых линий из магнитных полюсов, что в результате вращения приводит к явлению пульсара как космического маяка. Любопытно, что излучаемая в космическое пространство энергия черпается из его энергии вращения, и период вращения пульсара постепенно увеличивается. Время от времени на этот плавный рост периода накладываются сбои частоты, когда пульсар практически мгновенно уменьшает значение периода. Эти сбои вызваны «звездотрясением» нейтронной звезды. По мере замедления вращения в твердой коре нейтронной звезды (см. рис. 3) постепенно накапливаются механические напряжения, и, когда эти напряжения превышают предел прочности, происходит внезапное высвобождение энергии и перестройка твердой коры — пульсар при такой перестройке мгновенно уменьшает свой период вращения.

Как излучают «черные дыры»?

Внешнее гравитационное поле — вот все, что остается от звезды после того, как она коллапсирует и превратится в «черную дыру». Все

богатство внешних характеристик звезды — магнитное поле, химический состав, спектр излучения — исчезает в процессе гравитационного коллапса. Представим себе на минутку фантастическую ситуацию, когда наша Земля оказалась бы рядом с «черной дырой» (рис. 4). Земля не просто начала бы падать на «черную дыру», приливные силы начали бы деформировать Землю, вытягивая ее в каплю, прежде чем она полностью поглотилась бы «черной дырой».

«Черная дыра» без вращения характеризуется лишь значением гравитационного радиуса Rg, ограничивающего сферу в окрестности «черной дыры», из-под которой никакие сигналы не могут выйти наружу. Если же «черная дыра» имеет еще и угловой момент вращения, то выше гравитационного радиуса появляется область, названная эрго-сферой. Находясь в эргосфере, частица не может оставаться в покое. При распаде частицы из эргосферы можно извлекать энергию — один осколок падает на «черную дыру», а второй улетает в бесконечность, унося с собой избыток энергии (см. рис. на стр. 44).

Поиск «черных дыр» в нашей Галактике наиболее перспективен в двойных звездных системах. Больше 50% звезд входят в состав двойных систем. Пусть одна из них превратилась в «черную дыру». Если вторая находится на достаточно безопасном расстоянии, то есть приливные силы не разрушают ее, а лишь немного деформируют, то такие две звезды будут по-прежнему вращаться вокруг общего центра тяжести, но одна из них будет невидима. Советские ученые, академик Я. Зельдович и О. Гусейнов, в 1965 году предложили искать «черные дыры» среди тех двойных систем, где невидим более массивный компонент. Более поздние исследования показали, что если оптическая звезда теряет вещество со своей поверхности, то вокруг «черной дыры» может возникнуть светящийся ореол. И сейчас все надежды астрономов связаны с изучением взаимодействия «черных дыр» с веществом, которое их окружает.

Сферическое падение холодного вещества на «черную дыру» не приводит к заметному выделению энергии: у «черной дыры» отсутствует поверхность, при ударе о которую вещество остановилось и высветило бы свою энергию. Но, как показали независимо друг от друга в 1964 году академик Я. Зельдович и американский астрофизик Е. Салпи-тер, если «черная дыра» «обдувается» направленным потоком газа, то за нею возникает сильная ударная волна, в которой газ нагревается до десятков миллионов градусов и

начинает излучать в рентгеновском диапазоне спектра. Так происходит, когда оптическая звезда истекает звездным ветром и ее размеры малы по сравнению с некоторой критической полостью, называемой полостью Роша (рис. 5а). Если же звезда заполняет всю полость Роша, то истечение происходит через «узкую горловину» (рис. 56), и вокруг «черной дыры» образуется диск. Вещество в диске по мере потери скорости падает по медленно скручивающейся спирали на «черную дыру». В процессе падения часть гравитационной энергии превращается в тепловую и нагревает диск. Сильнее всего разогреваются близкие к «черной дыре» области диска. Температура в них поднимается до десятков миллионов градусов, и в результате диск, как и в случае ударной волны, главную часть энергии излучает в рентгеновском диапазоне.

Аналогичная картина будет наблюдаться, если вместо «черной дыры» в двойной системе находится нейтронная звезда (рис. 5е). Однако нейтронная звезда обладает сильным магнитным полем. Это поле направляет падающее вещество в область магнитных полюсов, где и происходит выделение основной части энергии в рентгеновском диапазоне. При вращении такой нейтронной звезды мы будем наблюдать явление рентгеновского пульсара.

В настоящее время открыто большое число компактных рентгеновских источников в составе двойных систем. Они были обнаружены по регулярному выключению излучения во время затмения источника соседней оптической звездой. Если само излучение дополнительно промодулировано, то это скорее всего нейтронная звезда, если нет—есть основания считать такой источник «черной дырой». Оценки их масс, которые можно сделать на основании законов Кеплера, показали, что они больше критического предела для нейтронной звезды. Наиболее подробно изучен источник Лебедь X—1 с массой больше ЮМс. По всем своим характеристикам он является «черной дырой».

Долгое время большинство астрофизиков считало, что изолированная «черная дыра», вокруг которой нет никаких частиц, не излучает. Но несколько лет назад известный английский астрофизик С. Хокинг показал, что даже полностью изолированная «черная дыра» должна излучать в космическое пространство фотоны, нейтрино и другие частицы. Этот поток энергии вызван квантовыми явлениями рождения частиц в сильном переменном поле тяготения. При коллапсе звезда асимптотически

47