Юный техник - для умелых рук 1977-07, страница 5

Юный техник - для умелых рук 1977-07, страница 5

...И ЗМЕИ ПОСЛОЖНЕЕ

И по конструкции, и по использованию материалов, и по времени изготовления эти летательные аппараты отличаются от предыдущих. Они более современны и сложны. Но, наверное, тем приятнее будет опытным моделистам повозиться с ними: разобраться в схеме, понять принцип попета, уловить некоторые особенности.

На реактивной тяге

Многие из вас, вероятно, наблюдали, что, если река широко разливается, скорость ее течения становится значительно м-эньшг И наоборот: в узком месте скорость потока резко увеличивается, В воздухе, как и в воде, тоже действует этот физический закон. Попробуйте направить воздушный поток в широкий конец конической трубы (суживающийся диффузор), и вы увидите, как изменится скорость воздуха: на выходе ока будет больше, чем на входе. Чтобы на практике получить реактивную тягу (а именно так можно расценить изменение скорости потока в трубе), требуется одно условие: закрепить диффузор на большой пластине.

Когда плоский змей находится в воздухе, под ним создается зона повышенного давления, а над ним — пониженного. Под влиянием разности дав

лений поток воздуха врывается в диффузор и проходит по трубе. Но диффузор конический, поэтому скорость выходящего потока будет больше входящего (вспомним реку). Значит, диффузор работает как реактивный двигатель.

На рисунке 1 (см. стр, 6) вы видите воздушный змей англичанина Фредерика Бенсона, в конструкции которого использован эффект диффузора. Изобретатель утверждает, что реактивная тяга не только увеличивает скорость подъема воздушного змея, но и придает ему дополнительную устойчивость в полете.

Устроен реактивный змей довольно просто. Две прямоугольные поперечины скреплены в центре крест-накрест и связаны по краям прочной нитью. На этот каркас установлен согнутый из плотной бумаги или фольги диффузор. Обшивка обычная: бумага, ткань...

По принципу АВП

Известно, что аппараты на воздушной подушке (АВП) приподнимаются благодаря разности давлений: под днищем давление всегда больше, чем сверху. А устойчивость аппарата создается особым устройством, равномерно распределяющим поток газа по всему периметру.

Американский инженер Франклин Белл доказал, что и в воздухе могут летать аппараты, подобные АВП. Фантазия? Нет. Модель воздушного змея — тому свидетель (рис. 3 на стр. 7).

Гладкие днище и борта, небольшой киль, плавные обводы корпуса — сложная конструкция. Но зато набегающий поток воздуха без срывов и завихрений обтекает корпус и легко поднимает змей. Нетрудно заметить, что эти аэродинамические преимущества эффектив

ны не только при наборе высоты. Загнутые борта корпуса неплохо стабилизируют положение змея в воздухе на большой высоте. И последнее. Приглядитесь: не правда ли, в продольном сечении модель чем-то напоминает быстроходную моторную лодку?

Взлетает... парашют

Принято считать, что на парашюте спускаются только вниз. Поднимагь человека вверх, даже в восходящем потоке, парашют не может. Но группа польских инженеров попыталась опровергнуть это мнение. Они доказали, что при некоторых условиях парашют может подниматься вверх.

Вспомним знакомую с детства игру. Если на маленький парашютик — семечко одуванчика — подуть снизу, он поднимется вверх. Конечно, сравнивать одуванчик и современный парашют можно лишь условно — вертикально восходящую струю воздуха польские изобретатели создают мощными вентиляторами. Но ведь и обычный ветер нельзя сбрасывать со счетов, утверждает американец Джек Кармен и предлагает игрушку — змей-парашют (рис. 4).

Воздушный поток ударяет в слегка наклоненный купол парашюта и поднимает его вверх. Конструктивно модель ничем не отличается от известных детских парашютиков (об одном из них мы уже писали в приложении № 4, 1974 г.). Но есть и отличия. Например, для стабилизации полета к змею-парашюту прикреплен хвост, а в центре под куполом закреплена телескопическая трубка Она служит одновременно и жестким каркасом, и регулятором положения центра тяжести модели.

Возьмем прямоугольный лист картона (рис. 2). Точно по центру прикрепим его к оси О—О. Предположим, что лист вращается вокруг оси без трения и что

в любом положении он находится в состоянии равновесия. Допустим, ветер дует с постоянной силой перпендикулярно плоскости листа. Естественно, что в этом случае он не сможет повернуть лист вокруг оси О—О, поскольку действие его распределяется равномерно на весь лист. Теперь попробуем установить лист под некоторым углом к ветру. Мы увидим, как воздушный поток тотчас возвратит его в первоначальное положение, то есть поставит под пря

мым углом к направлению ветра. Из этого опыта следует: половина листа, наклоненная в сторону ветра, испытывает большее давление, чем та, которая находится с противоположной стороны. Поэтому, чтобы плоскость листа оставалась в наклонном положении, нужно поднять ось вращения О—О. Чем меньше угол наклона листа, тем выше нужно передвигать ось. Так определяется центр давления. А сила ветра, поддерживающая плоскость в наклонном положении, — это подъемная сила, приложенная в центре давления. Но угол наклона змея не остается постоянным: ведь ветер никогда не дует с одной и той же скоростью. Вот почему, если бы мы привязали к змею бечевку в одной точке, например, в точке совпадения центра давления и центра тяжести, он попросту начал бы кувыркаться в воздухе. Как вы поняли, положение центра давления зависит от угла а и при порывистом ветре эта точка постоянно смещается. Поэтому, чтобы сделать модель более устойчивой, к ней привязывают уздечку из двух-трех и более бечевок. Проделаем еще один опыт.

Возьмем палочку АВ (рис. За). Пусть она тоже символизирует сечение плос

кого змея. Подвесим ее за нитку в центре так, чтобы она приняла горизонтальное положение. Затем прикрепим недалеко от ее центра тяжести грузик И, имитирующий центр давления. Палочка сразу же потеряет равновесие и примет почти вертикальное положение. А теперь попробуем эту палочку (рис. 36) подвесить на двух нитках и снова привяжем к ней тот же грузик: палочка сохранит равновесие при любом положении грузика. Этот пример наглядно демонстрирует значение уздечки, которая позволяет свободно перемещать центр давления, не на| шая равновесия.

1 э